1782 Notizen

A Contribution to the Microwave Spectrum of Dimethylether-D6 in Excited Torsional States

H. Lutz and H. Dreizler

Abt. Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

(Z. Naturforsch. 30 a, 1782 [1975]; received September 29, 1975)

A number of rotational transitions of $(CD_3)_2O$ in the excited torsional states $\tilde{v}=1_1$ and $\tilde{v}=1_2$ were recorded in the region from 8.0 to 40.0 GHz. The potential parameter V_3 and the angle α between the axis of internal rotation and the b-axis were fitted to line splittings. The results are $V_3=2545$ cal/mole and $\alpha=60.8^\circ$.

The spectra were recorded in the region from 8.0 to 40.0 GHz with a conventional microwave spectrometer ^{1, 2} equipped with an 8m-absorption cell and employing 33 kHz Stark-modulation. The sample pressure was 10 mT and the temperature approximately -50 °C. The (CD₃)₂O was supplied by Isocommerz GmbH, Leipzig.

The ground state spectrum of $(CD_3)_2O$ has been assigned earlier, but only a few lines were measured. We recorded additional lines and remeasured those given in 3 with higher accuracy. A splitting due to internal rotation was not observable in the ground torsional state $\tilde{v} = 0_0^{-4}$. The rotational constants determined from seven lines up to J = 3 are $A = 25\,696.17 \pm 0.11$, $B = 7483.80 \pm 0.03$, $C = 6798.01 \pm 0.06$ MHz.

About 20 rotational transitions of both excited torsional states $\tilde{v} = l_1$ and $\tilde{v} = l_2^{-4}$ were observed as triplets or quartets. The components of these multiplets are characterized by the A_1A_2 , EE, A_1E , EA₂ and A_2A_1 , EE, A_2E , EA₁ species of the group $C_{3V}^- \otimes C_{3V}^+$. The assignment of the multiplets was made by use of the Stark-effect. Furthermore the transitions of the torsional state $v = l_1$ appeared stronger in intensity than those of $\tilde{v} = l_2$. The $[A_iA_j - (A_iE, EA_j)]$ -splittings of the rotational transitions were different for both torsional states.

The rotational constants calculated for the A_1A_2 -and A_2A_1 -species of the $v=1_1$ and $v=1_2$ states using the rigid rotor approximation are given in Table 1. For both torsional substates the same set of seven rotational transitions up to J=3 was used.

The potential barrier V_3 and the angle α between the axis of internal rotation of a top and the b-axis

Reprint requests to Prof. Dr. H. Dreizler, Institut für Physikal. Chemie der Universität Kiel, Abt. Chem. Physik, D-2300 Kiel, Olshausenstraße 40-60.

Table 1. Effective rotational constants 5 of the torsional states $\tilde{v}=1_1$ and $\tilde{v}=1_2$ (A_i A_j-species) in MHz.

	$\widetilde{v} = 1_1$ $A_1 A_2$	$\tilde{v} = 1_2$ $A_2 A_1$
A	25 701.73 ± 0.09	25 674.80 ± 0.09
B	7 466.97 ± 0.03	7 448.76 ± 0.03
C	6 785.67 ± 0.05	6 793.73 ± 0.05

were calculated for 16 lines, using the average ⁵ of the $[A_{ij}-(A_iE,EA_j)]$ -splittings for $\tilde{v}=1_1$ and $\tilde{v}=1_2$. This calculation * used second and fourth order perturbation neglecting the potential interaction terms V_{12} and V_{12} ⁴. The value for I_a used in this calculation was taken from Blukis et al. ³. The results are given in Table 2. Values for $(CH_3)_2O$ calculated with the same program are included for comparison. These values were determined from the ground state spectrum of $(CH_3)_2O$ in cooperation with Lovas ⁶.

Table 2. Internal rotation parameters.

	$(CD_3)_2O$ $\tilde{v}=1_1,1_2$	$(CH_3)_2O$ $v=0_0$
V_3 α^a I_a^b S F $\alpha_{r_s}^c$ $2 \rightleftharpoons COC$	2545 cal/mole 60.8°±0.4 6.42742 amu A² 109.91±0.6 107.94 GHz	2561 cal/mole $57.9^{\circ} \pm 0.4$ 3.20740 amu A² 60.99 ± 0.3 195.71 GHz $58.38^{\circ} \pm 0.7$ $55.86^{\circ} \pm 0.3$ ³

a Definition see text.

Further work on the determination of the potential coupling parameters V_{12} and V_{12}' , also for $(CH_3)_2O$, is in progress. To determine V_{12} we hope to assign higher excited torsional states, of which we already have observed several lines.

We thank Prof. Dr. H. D. Rudolph for supplying his SPLIT 5 program. The calculations were made with the PDP 10 of the Rechenzentrum der Universität Kiel. We gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemie.

6 Private Communication F. J. Lovas, National Bureau of Standards Washington D.C.

¹ H. D. Rudolph, Z. Angew. Phys. 13, 401 [1961].

² U. Andresen and H. Dreizler, Z. Angew. Phys. 30, 207 [1970].

³ U. Blukis, P. H. Kasai, and R. J. Myers, J. Chem. Phys. 33, 2753 [1963].

b From U. Blukis et al. 3,

^c Same angle as α , but derived from the r_s -structure ³ of $(CH_3)_2O$.

⁴ A. Trinkaus, H. Dreizler, and H. D. Rudolph, Z. Naturforsch. 28 a, 750 [1973].

⁵ H. Dreizler and G. Dendl, Z. Naturforsch. 20 a, 1431 [1965].

^{*} Program SPLIT 5 from H. D. Rudolph, Department of Physical Chemistry, University of Ulm, Germany.